The goal of machine learning regression problem is to predict a single numeric value. For example, you might want to predict an employee’s salary based on age, height, high school grade point average, and so on. There are approximately a dozen common regression techniques. The most basic technique is called linear regression.
Linear regression is simple, but it doesn’t work well with data that has a non-linear structure, or data that has interaction between predictor variables. Quadratic regression extends basic linear regression to handle complex data.
I put together a demo, from scratch, using node.js JavaScript. The demo data is synthetic and looks like:
-0.1660, 0.4406, -0.9998, -0.3953, -0.7065, 0.4840 0.0776, -0.1616, 0.3704, -0.5911, 0.7562, 0.1568 -0.9452, 0.3409, -0.1654, 0.1174, -0.7192, 0.8054 0.9365, -0.3732, 0.3846, 0.7528, 0.7892, 0.1345 . . .
The first five values on each line are the x predictors. The last value on each line is the target y variable to predict. There are 200 training items and 40 test items. The data was generated by a neural network with small random weights and biases.
The output of the demo program is:
Begin quadratic regression with SGD training using node.js JavaScript Loading train (200) and test (40) from file First three train X: -0.1660 0.4406 -0.9998 -0.3953 -0.7065 0.0776 -0.1616 0.3704 -0.5911 0.7562 -0.9452 0.3409 -0.1654 0.1174 -0.7192 First three train y: 0.4840 0.1568 0.8054 Creating quadratic regression model Setting lrnRate = 0.001 Setting maxEpochs = 1000 Starting SGD training epoch = 0 MSE = 0.0925 acc = 0.0100 epoch = 200 MSE = 0.0003 acc = 0.9050 epoch = 400 MSE = 0.0003 acc = 0.8850 epoch = 600 MSE = 0.0003 acc = 0.8850 epoch = 800 MSE = 0.0003 acc = 0.8850 Done Model base weights: -0.2630 0.0354 -0.0420 0.0341 -0.1124 Model quadratic weights: 0.0655 0.0194 0.0051 0.0047 0.0243 Model interaction weights: 0.0043 0.0249 0.0071 0.1081 -0.0012 -0.0093 0.0362 0.0085 -0.0568 0.0016 Model bias: 0.3220 Computing model accuracy Train acc (within 0.10) = 0.8850 Test acc (within 0.10) = 0.9250 Train MSE = 0.0003 Test MSE = 0.0005 Predicting for x = -0.1660 0.4406 -0.9998 -0.3953 -0.7065 Predicted y = 0.4843 End demo
The quadratic regression model accuracy is very good. A prediction is scored as accurate if it’s within 10% of the true target y value.
Quadratic regression is an extension of linear regression. Suppose, as in the demo data, each data item has five predictors, (x0, x1, x2, x3, x4). The prediction equation for basic linear regression is:
y' = (w0 * x0) + (w1 * x1) + (w2 * x2) +
(w3 * x3) + (w4 * x4) + b
The wi are model weights (aka coefficients), and b is the model bias (aka intercept). The values of the weights and the bias must be determined by training, so that predicted y’ values are close to the known, correct y values in a set of training data.
The prediction equation for quadratic regression is:
y' = (w0 * x0) + (w1 * x1) + (w2 * x2) +
(w3 * x3) + (w4 * x4) +
(w5 * x0*x0) + (w6 * x1*x1) + (w7 * x2*x2) +
(w8 * x3*x3) + (w9 * x4*x4) +
(w10 * x0*x1) + (w11 * x0*x2) + (w12 * x0*x3) +
(w13 * x0*x4) + (w14 * x1*x2) + (w15 * x1*x3) +
(w16 * x1*x4) + (w17 * x2*x3) + (w18 * x2*x4) +
(w19 * x3*x4)
+ b
The squared (aka “quadratic”) xi^2 terms handle non-linear structure. If there are n predictors, there are also n squared terms. The xi * xj terms between all possible pairs pf original predictors handle interactions between predictors. If there are n predictors, there (n * (n-1)) / 2 interaction terms.
Behind the scenes, the derived xi^2 squared terms and the derived xi*xj interactions terms are computed programmatically on-the-fly, as opposed to explicitly creating an augmented static dataset. In spite of the multiplication of the base predictors, the model is still a linear model.
Quadratic regression is a subset of polynomial regression. For example, cubic regression includes xi^3 terms, quartic regression includes xi^4, and so on.
Quadratic regression is a superset of linear regression with two-way interactions. Linear regression with two-way interactions includes only the derived xi * xj terms, and omits the xi^2 terms.
Good fun.

Quadratic regression was an interesting step forward in the history of machine learning. I’ve always been interested in all kinds of history.
The “Vagabond” (1962) pinball machine by Williams was an important step forward in the evolution of pinball machines. “Vagabond: was the first machine to feature drop targets: like small signs sticking up from the playing surface, that, when hit, score points and then drop below the playing surface. Almost all modern pinball machines have drop targets.
I’ve circled in red the location of the drop target, which is retracted below the playing surface. The inset at bottom shows the raised target. This machine introduced a nice innovation, but I can’t say I care much for the machine artwork.
Demo program. Replace “lt” (less than), “gt”, “lte”, “gte”, with Boolean operator symbols (my blog editor chokes on symbols).
// quadratic_regression_sgd.js
// quadratic regression using SGD training
// node.js
let FS = require("fs") // for loadTxt()
// ----------------------------------------------------------
class QuadraticRegressor
{
constructor(seed)
{
this.weights; // allocated in train()
this.bias; // supplied in train()
this.seed = seed + 0.5; // avoid 0
}
// --------------------------------------------------------
predict(x)
{
let dim = x.length;
let result = 0.0;
let p = 0; // ptr into wts
for (let i = 0; i "lt" dim; ++i) // regular
result += x[i] * this.weights[p++];
for (let i = 0; i "lt" dim; ++i) // quadratic
result += x[i] * x[i] * this.weights[p++];
for (let i = 0; i "lt" dim-1; ++i) // interactions
for (let j = i+1; j "lt" dim; ++j)
result += x[i] * x[j] * this.weights[p++];
result += this.bias;
return result;
}
// --------------------------------------------------------
train(trainX, trainY, lrnRate, maxEpochs)
{
let nRows = trainX.length;
let dim = trainX[0].length; // number predictors
let nInteractions = (dim * (dim - 1)) / 2;
this.weights = vecMake(dim + dim + nInteractions, 0.0);
let low = -0.01; let hi = 0.01;
for (let i = 0; i "lt" dim; ++i)
this.weights[i] = (hi - low) *
this.next() + low;
this.bias = (hi - low) *
this.next() + low;
let indices = vecMake(nRows, 0.0); // for shuffling
for (let i = 0; i "lt" nRows; ++i)
indices[i] = i;
for (let epoch = 0; epoch "lt" maxEpochs; ++epoch) {
// shuffle order of train data, Fisher-Yates
let n = indices.length;
for (let i = 0; i "lt" n; ++i) {
let ri = this.nextInt(i, n);
let tmp = indices[i];
indices[i] = indices[ri];
indices[ri] = tmp;
}
for (let i = 0; i "lt" nRows; ++i) {
let ii = indices[i];
let x = trainX[ii];
let predY = this.predict(x);
let actualY = trainY[ii];
let p = 0; // points into weights
// update regular weights
for (let j = 0; j "lt" dim; ++j)
this.weights[p++] -= lrnRate *
(predY - actualY) * x[j];
// update quadratic weights
for (let j = 0; j "lt" dim; ++j)
this.weights[p++] -= lrnRate *
(predY - actualY) * x[j] * x[j];
// update interaction weights
for (let j = 0; j "lt" dim - 1; ++j)
for (let k = j + 1; k "lt" dim; ++k)
this.weights[p++] -= lrnRate *
(predY - actualY) * x[j] * x[k];
// update the bias
this.bias -= lrnRate * (predY - actualY) * 1.0;
}
if (epoch % (maxEpochs / 5) == 0) // show progress
{
let mse = this.mse(trainX, trainY);
let acc = this.accuracy(trainX, trainY, 0.10);
let s1 = "epoch = " +
epoch.toString().padStart(6, ' ');
let s2 = " MSE = " +
mse.toFixed(4).toString();
let s3 = " acc = " + acc.toFixed(4).toString();
console.log(s1 + s2 + s3);
}
} // epoch
// apply wt decay ~ L2 regularization
// for (let j = 0; j "lt" dim; ++j)
// this.wts[j] *= (1.0 - this.alpha);
} // train()
// --------------------------------------------------------
accuracy(dataX, dataY, pctClose)
{
let nCorrect = 0; let nWrong = 0;
let N = dataX.length;
for (let i = 0; i "lt" N; ++i) {
let x = dataX[i];
let actualY = dataY[i];
let predY = this.predict(x);
if (Math.abs(predY - actualY) "lt"
Math.abs(pctClose * actualY)) {
++nCorrect;
}
else {
++nWrong;
}
}
return (nCorrect * 1.0) / (nCorrect + nWrong);
}
// --------------------------------------------------------
mse(dataX, dataY)
{
let n = dataX.length;
let sum = 0.0;
for (let i = 0; i "lt" n; ++i) {
let x = dataX[i];
let actualY = dataY[i];
let predY = this.predict(x);
sum += (actualY - predY) * (actualY - predY);
}
return sum / n;
}
// --------------------------------------------------------
next()
{
// return sort-of-random in [0.0, 1.0)
let x = Math.sin(this.seed) * 1000;
let result = x - Math.floor(x); // [0.0,1.0)
this.seed = result; // for next call
return result;
}
// --------------------------------------------------------
nextInt(lo, hi)
{
let x = this.next();
return Math.trunc((hi - lo) * x + lo);
}
// --------------------------------------------------------
shuffle(indices)
{
// Fisher-Yates
for (let i = 0; i "lt" indices.length; ++i) {
let ri = this.nextInt(i, indices.length);
let tmp = indices[ri];
indices[ri] = indices[i];
indices[i] = tmp;
//indices[i] = i; // for testing
}
}
} // end class LinearRegressor
// ----------------------------------------------------------
// vector and matrix functions
// ----------------------------------------------------------
function vecMake(n, val)
{
let result = [];
for (let i = 0; i "lt" n; ++i) {
result[i] = val;
}
return result;
}
// ----------------------------------------------------------
function matMake(nRows, nCols, val)
{
let result = [];
for (let i = 0; i "lt" nRows; ++i) {
result[i] = [];
for (let j = 0; j "lt" nCols; ++j) {
result[i][j] = val;
}
}
return result;
}
// ----------------------------------------------------------
function vecShow(vec, dec, wid, nl)
{
let small = 1.0 / Math.pow(10, dec);
for (let i = 0; i "lt" vec.length; ++i) {
let x = vec[i];
if (Math.abs(x) "lt" small) x = 0.0 // avoid -0.00
let xx = x.toFixed(dec);
let s = xx.toString().padStart(wid, ' ');
process.stdout.write(s);
process.stdout.write(" ");
}
if (nl == true)
process.stdout.write("\n");
}
// ----------------------------------------------------------
function matShow(A, dec, wid)
{
let small = 1.0 / Math.pow(10, dec);
let nr = A.length;
let nc = A[0].length;
for (let i = 0; i "lt" nr; ++i) {
for (let j = 0; j "lt" nc; ++j) {
let x = A[i][j];
if (Math.abs(x) "lt" small) x = 0.0;
let xx = x.toFixed(dec);
let s = xx.toString().padStart(wid, ' ');
process.stdout.write(s);
process.stdout.write(" ");
}
process.stdout.write("\n");
}
}
// ----------------------------------------------------------
function matToVec(M)
{
let nr = M.length;
let nc = M[0].length;
let result = vecMake(nr*nc, 0.0);
let k = 0;
for (let i = 0; i "lt" nr; ++i) {
for (let j = 0; j "lt" nc; ++j) {
result[k++] = M[i][j];
}
}
return result;
}
// ----------------------------------------------------------
function loadTxt(fn, delimit, usecols, comment)
{
// efficient but mildly complicated
let all = FS.readFileSync(fn, "utf8"); // giant string
all = all.trim(); // strip final crlf in file
let lines = all.split("\n"); // array of lines
// count number non-comment lines
let nRows = 0;
for (let i = 0; i "lt" lines.length; ++i) {
if (!lines[i].startsWith(comment))
++nRows;
}
let nCols = usecols.length;
let result = matMake(nRows, nCols, 0.0);
let r = 0; // into lines
let i = 0; // into result[][]
while (r "lt" lines.length) {
if (lines[r].startsWith(comment)) {
++r; // next row
}
else {
let tokens = lines[r].split(delimit);
for (let j = 0; j "lt" nCols; ++j) {
result[i][j] = parseFloat(tokens[usecols[j]]);
}
++r;
++i;
}
}
return result;
}
// ----------------------------------------------------------
function main()
{
console.log("\nBegin quadratic regression " +
"with SGD training using node.js JavaScript ");
// 1. load data
console.log("\nLoading train (200) and" +
" test (40) from file ");
let trainFile = ".\\Data\\synthetic_train_200.txt";
let trainX = loadTxt(trainFile, ",", [0,1,2,3,4], "#");
let trainY = loadTxt(trainFile, ",", [5], "#");
trainY = matToVec(trainY);
let testFile = ".\\Data\\synthetic_test_40.txt";
let testX = loadTxt(testFile, ",", [0,1,2,3,4], "#");
let testY = loadTxt(testFile, ",", [5], "#");
testY = matToVec(testY);
console.log("\nFirst three train X: ");
for (let i = 0; i "lt" 3; ++i)
vecShow(trainX[i], 4, 8, true);
console.log("\nFirst three train y: ");
for (let i = 0; i "lt" 3; ++i)
console.log(trainY[i].toFixed(4).toString().
padStart(9, ' '));
// 2. create and train quadratic regression model
let seed = 0;
console.log("\nCreating quadratic regression model ");
let model = new QuadraticRegressor(seed);
let lrnRate = 0.001;
let maxEpochs = 1000;
console.log("\nSetting lrnRate = " +
lrnRate.toFixed(3).toString());
console.log("Setting maxEpochs = " +
maxEpochs.toString());
console.log("\nStarting SGD training ");
model.train(trainX, trainY, lrnRate, maxEpochs);
console.log("Done ");
// 3. show model weights
console.log("\nModel base weights: ");
let dim = trainX[0].length;
for (let i = 0; i "lt" dim; ++i)
process.stdout.write(model.weights[i].toFixed(4).
toString().padStart(8, ' '));
console.log("");
console.log("\nModel quadratic weights: ");
for (let i = dim; i "lt" dim + dim; ++i)
process.stdout.write(model.weights[i].toFixed(4).
toString().padStart(8, ' '));
console.log("");
console.log("\nModel interaction weights: ");
for (let i = dim + dim; i "lt" model.weights.length; ++i) {
process.stdout.write(model.weights[i].toFixed(4).
toString().padStart(8, ' '));
if (i "gt" dim+dim && i % dim == 0)
console.log("");
}
console.log("");
console.log("\nModel bias: " +
model.bias.toFixed(4).toString());
// 4. evaluate
console.log("\nComputing model accuracy ");
let trainAcc = model.accuracy(trainX, trainY, 0.10);
let testAcc = model.accuracy(testX, testY, 0.10);
console.log("\nTrain acc (within 0.10) = " +
trainAcc.toFixed(4).toString());
console.log("Test acc (within 0.10) = " +
testAcc.toFixed(4).toString());
let trainMSE = model.mse(trainX, trainY);
let testMSE = model.mse(testX, testY);
console.log("\nTrain MSE = " +
trainMSE.toFixed(4).toString());
console.log("Test MSE = " +
testMSE.toFixed(4).toString());
// 5. use model
let x = trainX[0];
console.log("\nPredicting for x = ");
vecShow(x, 4, 9, true); // add newline
let predY = model.predict(x);
console.log("Predicted y = " +
predY.toFixed(4).toString());
console.log("\nEnd demo");
}
main();
Training data:
# synthetic_train_200.txt # -0.1660, 0.4406, -0.9998, -0.3953, -0.7065, 0.4840 0.0776, -0.1616, 0.3704, -0.5911, 0.7562, 0.1568 -0.9452, 0.3409, -0.1654, 0.1174, -0.7192, 0.8054 0.9365, -0.3732, 0.3846, 0.7528, 0.7892, 0.1345 -0.8299, -0.9219, -0.6603, 0.7563, -0.8033, 0.7955 0.0663, 0.3838, -0.3690, 0.3730, 0.6693, 0.3206 -0.9634, 0.5003, 0.9777, 0.4963, -0.4391, 0.7377 -0.1042, 0.8172, -0.4128, -0.4244, -0.7399, 0.4801 -0.9613, 0.3577, -0.5767, -0.4689, -0.0169, 0.6861 -0.7065, 0.1786, 0.3995, -0.7953, -0.1719, 0.5569 0.3888, -0.1716, -0.9001, 0.0718, 0.3276, 0.2500 0.1731, 0.8068, -0.7251, -0.7214, 0.6148, 0.3297 -0.2046, -0.6693, 0.8550, -0.3045, 0.5016, 0.2129 0.2473, 0.5019, -0.3022, -0.4601, 0.7918, 0.2613 -0.1438, 0.9297, 0.3269, 0.2434, -0.7705, 0.5171 0.1568, -0.1837, -0.5259, 0.8068, 0.1474, 0.3307 -0.9943, 0.2343, -0.3467, 0.0541, 0.7719, 0.5581 0.2467, -0.9684, 0.8589, 0.3818, 0.9946, 0.1092 -0.6553, -0.7257, 0.8652, 0.3936, -0.8680, 0.7018 0.8460, 0.4230, -0.7515, -0.9602, -0.9476, 0.1996 -0.9434, -0.5076, 0.7201, 0.0777, 0.1056, 0.5664 0.9392, 0.1221, -0.9627, 0.6013, -0.5341, 0.1533 0.6142, -0.2243, 0.7271, 0.4942, 0.1125, 0.1661 0.4260, 0.1194, -0.9749, -0.8561, 0.9346, 0.2230 0.1362, -0.5934, -0.4953, 0.4877, -0.6091, 0.3810 0.6937, -0.5203, -0.0125, 0.2399, 0.6580, 0.1460 -0.6864, -0.9628, -0.8600, -0.0273, 0.2127, 0.5387 0.9772, 0.1595, -0.2397, 0.1019, 0.4907, 0.1611 0.3385, -0.4702, -0.8673, -0.2598, 0.2594, 0.2270 -0.8669, -0.4794, 0.6095, -0.6131, 0.2789, 0.4700 0.0493, 0.8496, -0.4734, -0.8681, 0.4701, 0.3516 0.8639, -0.9721, -0.5313, 0.2336, 0.8980, 0.1412 0.9004, 0.1133, 0.8312, 0.2831, -0.2200, 0.1782 0.0991, 0.8524, 0.8375, -0.2102, 0.9265, 0.2150 -0.6521, -0.7473, -0.7298, 0.0113, -0.9570, 0.7422 0.6190, -0.3105, 0.8802, 0.1640, 0.7577, 0.1056 0.6895, 0.8108, -0.0802, 0.0927, 0.5972, 0.2214 0.1982, -0.9689, 0.1870, -0.1326, 0.6147, 0.1310 -0.3695, 0.7858, 0.1557, -0.6320, 0.5759, 0.3773 -0.1596, 0.3581, 0.8372, -0.9992, 0.9535, 0.2071 -0.2468, 0.9476, 0.2094, 0.6577, 0.1494, 0.4132 0.1737, 0.5000, 0.7166, 0.5102, 0.3961, 0.2611 0.7290, -0.3546, 0.3416, -0.0983, -0.2358, 0.1332 -0.3652, 0.2438, -0.1395, 0.9476, 0.3556, 0.4170 -0.6029, -0.1466, -0.3133, 0.5953, 0.7600, 0.4334 -0.4596, -0.4953, 0.7098, 0.0554, 0.6043, 0.2775 0.1450, 0.4663, 0.0380, 0.5418, 0.1377, 0.2931 -0.8636, -0.2442, -0.8407, 0.9656, -0.6368, 0.7429 0.6237, 0.7499, 0.3768, 0.1390, -0.6781, 0.2185 -0.5499, 0.1850, -0.3755, 0.8326, 0.8193, 0.4399 -0.4858, -0.7782, -0.6141, -0.0008, 0.4572, 0.4197 0.7033, -0.1683, 0.2334, -0.5327, -0.7961, 0.1776 0.0317, -0.0457, -0.6947, 0.2436, 0.0880, 0.3345 0.5031, -0.5559, 0.0387, 0.5706, -0.9553, 0.3107 -0.3513, 0.7458, 0.6894, 0.0769, 0.7332, 0.3170 0.2205, 0.5992, -0.9309, 0.5405, 0.4635, 0.3532 -0.4806, -0.4859, 0.2646, -0.3094, 0.5932, 0.3202 0.9809, -0.3995, -0.7140, 0.8026, 0.0831, 0.1600 0.9495, 0.2732, 0.9878, 0.0921, 0.0529, 0.1289 -0.9476, -0.6792, 0.4913, -0.9392, -0.2669, 0.5966 0.7247, 0.3854, 0.3819, -0.6227, -0.1162, 0.1550 -0.5922, -0.5045, -0.4757, 0.5003, -0.0860, 0.5863 -0.8861, 0.0170, -0.5761, 0.5972, -0.4053, 0.7301 0.6877, -0.2380, 0.4997, 0.0223, 0.0819, 0.1404 0.9189, 0.6079, -0.9354, 0.4188, -0.0700, 0.1907 -0.1428, -0.7820, 0.2676, 0.6059, 0.3936, 0.2790 0.5324, -0.3151, 0.6917, -0.1425, 0.6480, 0.1071 -0.8432, -0.9633, -0.8666, -0.0828, -0.7733, 0.7784 -0.9444, 0.5097, -0.2103, 0.4939, -0.0952, 0.6787 -0.0520, 0.6063, -0.1952, 0.8094, -0.9259, 0.4836 0.5477, -0.7487, 0.2370, -0.9793, 0.0773, 0.1241 0.2450, 0.8116, 0.9799, 0.4222, 0.4636, 0.2355 0.8186, -0.1983, -0.5003, -0.6531, -0.7611, 0.1511 -0.4714, 0.6382, -0.3788, 0.9648, -0.4667, 0.5950 0.0673, -0.3711, 0.8215, -0.2669, -0.1328, 0.2677 -0.9381, 0.4338, 0.7820, -0.9454, 0.0441, 0.5518 -0.3480, 0.7190, 0.1170, 0.3805, -0.0943, 0.4724 -0.9813, 0.1535, -0.3771, 0.0345, 0.8328, 0.5438 -0.1471, -0.5052, -0.2574, 0.8637, 0.8737, 0.3042 -0.5454, -0.3712, -0.6505, 0.2142, -0.1728, 0.5783 0.6327, -0.6297, 0.4038, -0.5193, 0.1484, 0.1153 -0.5424, 0.3282, -0.0055, 0.0380, -0.6506, 0.6613 0.1414, 0.9935, 0.6337, 0.1887, 0.9520, 0.2540 -0.9351, -0.8128, -0.8693, -0.0965, -0.2491, 0.7353 0.9507, -0.6640, 0.9456, 0.5349, 0.6485, 0.1059 -0.0462, -0.9737, -0.2940, -0.0159, 0.4602, 0.2606 -0.0627, -0.0852, -0.7247, -0.9782, 0.5166, 0.2977 0.0478, 0.5098, -0.0723, -0.7504, -0.3750, 0.3335 0.0090, 0.3477, 0.5403, -0.7393, -0.9542, 0.4415 -0.9748, 0.3449, 0.3736, -0.1015, 0.8296, 0.4358 0.2887, -0.9895, -0.0311, 0.7186, 0.6608, 0.2057 0.1570, -0.4518, 0.1211, 0.3435, -0.2951, 0.3244 0.7117, -0.6099, 0.4946, -0.4208, 0.5476, 0.1096 -0.2929, -0.5726, 0.5346, -0.3827, 0.4665, 0.2465 0.4889, -0.5572, -0.5718, -0.6021, -0.7150, 0.2163 -0.7782, 0.3491, 0.5996, -0.8389, -0.5366, 0.6516 -0.5847, 0.8347, 0.4226, 0.1078, -0.3910, 0.6134 0.8469, 0.4121, -0.0439, -0.7476, 0.9521, 0.1571 -0.6803, -0.5948, -0.1376, -0.1916, -0.7065, 0.7156 0.2878, 0.5086, -0.5785, 0.2019, 0.4979, 0.2980 0.2764, 0.1943, -0.4090, 0.4632, 0.8906, 0.2960 -0.8877, 0.6705, -0.6155, -0.2098, -0.3998, 0.7107 -0.8398, 0.8093, -0.2597, 0.0614, -0.0118, 0.6502 -0.8476, 0.0158, -0.4769, -0.2859, -0.7839, 0.7715 0.5751, -0.7868, 0.9714, -0.6457, 0.1448, 0.1175 0.4802, -0.7001, 0.1022, -0.5668, 0.5184, 0.1090 0.4458, -0.6469, 0.7239, -0.9604, 0.7205, 0.0779 0.5175, 0.4339, 0.9747, -0.4438, -0.9924, 0.2879 0.8678, 0.7158, 0.4577, 0.0334, 0.4139, 0.1678 0.5406, 0.5012, 0.2264, -0.1963, 0.3946, 0.2088 -0.9938, 0.5498, 0.7928, -0.5214, -0.7585, 0.7687 0.7661, 0.0863, -0.4266, -0.7233, -0.4197, 0.1466 0.2277, -0.3517, -0.0853, -0.1118, 0.6563, 0.1767 0.3499, -0.5570, -0.0655, -0.3705, 0.2537, 0.1632 0.7547, -0.1046, 0.5689, -0.0861, 0.3125, 0.1257 0.8186, 0.2110, 0.5335, 0.0094, -0.0039, 0.1391 0.6858, -0.8644, 0.1465, 0.8855, 0.0357, 0.1845 -0.4967, 0.4015, 0.0805, 0.8977, 0.2487, 0.4663 0.6760, -0.9841, 0.9787, -0.8446, -0.3557, 0.1509 -0.1203, -0.4885, 0.6054, -0.0443, -0.7313, 0.4854 0.8557, 0.7919, -0.0169, 0.7134, -0.1628, 0.2002 0.0115, -0.6209, 0.9300, -0.4116, -0.7931, 0.4052 -0.7114, -0.9718, 0.4319, 0.1290, 0.5892, 0.3661 0.3915, 0.5557, -0.1870, 0.2955, -0.6404, 0.2954 -0.3564, -0.6548, -0.1827, -0.5172, -0.1862, 0.4622 0.2392, -0.4959, 0.5857, -0.1341, -0.2850, 0.2470 -0.3394, 0.3947, -0.4627, 0.6166, -0.4094, 0.5325 0.7107, 0.7768, -0.6312, 0.1707, 0.7964, 0.2757 -0.1078, 0.8437, -0.4420, 0.2177, 0.3649, 0.4028 -0.3139, 0.5595, -0.6505, -0.3161, -0.7108, 0.5546 0.4335, 0.3986, 0.3770, -0.4932, 0.3847, 0.1810 -0.2562, -0.2894, -0.8847, 0.2633, 0.4146, 0.4036 0.2272, 0.2966, -0.6601, -0.7011, 0.0284, 0.2778 -0.0743, -0.1421, -0.0054, -0.6770, -0.3151, 0.3597 -0.4762, 0.6891, 0.6007, -0.1467, 0.2140, 0.4266 -0.4061, 0.7193, 0.3432, 0.2669, -0.7505, 0.6147 -0.0588, 0.9731, 0.8966, 0.2902, -0.6966, 0.4955 -0.0627, -0.1439, 0.1985, 0.6999, 0.5022, 0.3077 0.1587, 0.8494, -0.8705, 0.9827, -0.8940, 0.4263 -0.7850, 0.2473, -0.9040, -0.4308, -0.8779, 0.7199 0.4070, 0.3369, -0.2428, -0.6236, 0.4940, 0.2215 -0.0242, 0.0513, -0.9430, 0.2885, -0.2987, 0.3947 -0.5416, -0.1322, -0.2351, -0.0604, 0.9590, 0.3683 0.1055, 0.7783, -0.2901, -0.5090, 0.8220, 0.2984 -0.9129, 0.9015, 0.1128, -0.2473, 0.9901, 0.4776 -0.9378, 0.1424, -0.6391, 0.2619, 0.9618, 0.5368 0.7498, -0.0963, 0.4169, 0.5549, -0.0103, 0.1614 -0.2612, -0.7156, 0.4538, -0.0460, -0.1022, 0.3717 0.7720, 0.0552, -0.1818, -0.4622, -0.8560, 0.1685 -0.4177, 0.0070, 0.9319, -0.7812, 0.3461, 0.3052 -0.0001, 0.5542, -0.7128, -0.8336, -0.2016, 0.3803 0.5356, -0.4194, -0.5662, -0.9666, -0.2027, 0.1776 -0.2378, 0.3187, -0.8582, -0.6948, -0.9668, 0.5474 -0.1947, -0.3579, 0.1158, 0.9869, 0.6690, 0.2992 0.3992, 0.8365, -0.9205, -0.8593, -0.0520, 0.3154 -0.0209, 0.0793, 0.7905, -0.1067, 0.7541, 0.1864 -0.4928, -0.4524, -0.3433, 0.0951, -0.5597, 0.6261 -0.8118, 0.7404, -0.5263, -0.2280, 0.1431, 0.6349 0.0516, -0.8480, 0.7483, 0.9023, 0.6250, 0.1959 -0.3212, 0.1093, 0.9488, -0.3766, 0.3376, 0.2735 -0.3481, 0.5490, -0.3484, 0.7797, 0.5034, 0.4379 -0.5785, -0.9170, -0.3563, -0.9258, 0.3877, 0.4121 0.3407, -0.1391, 0.5356, 0.0720, -0.9203, 0.3458 -0.3287, -0.8954, 0.2102, 0.0241, 0.2349, 0.3247 -0.1353, 0.6954, -0.0919, -0.9692, 0.7461, 0.3338 0.9036, -0.8982, -0.5299, -0.8733, -0.1567, 0.1187 0.7277, -0.8368, -0.0538, -0.7489, 0.5458, 0.0830 0.9049, 0.8878, 0.2279, 0.9470, -0.3103, 0.2194 0.7957, -0.1308, -0.5284, 0.8817, 0.3684, 0.2172 0.4647, -0.4931, 0.2010, 0.6292, -0.8918, 0.3371 -0.7390, 0.6849, 0.2367, 0.0626, -0.5034, 0.7039 -0.1567, -0.8711, 0.7940, -0.5932, 0.6525, 0.1710 0.7635, -0.0265, 0.1969, 0.0545, 0.2496, 0.1445 0.7675, 0.1354, -0.7698, -0.5460, 0.1920, 0.1728 -0.5211, -0.7372, -0.6763, 0.6897, 0.2044, 0.5217 0.1913, 0.1980, 0.2314, -0.8816, 0.5006, 0.1998 0.8964, 0.0694, -0.6149, 0.5059, -0.9854, 0.1825 0.1767, 0.7104, 0.2093, 0.6452, 0.7590, 0.2832 -0.3580, -0.7541, 0.4426, -0.1193, -0.7465, 0.5657 -0.5996, 0.5766, -0.9758, -0.3933, -0.9572, 0.6800 0.9950, 0.1641, -0.4132, 0.8579, 0.0142, 0.2003 -0.4717, -0.3894, -0.2567, -0.5111, 0.1691, 0.4266 0.3917, -0.8561, 0.9422, 0.5061, 0.6123, 0.1212 -0.0366, -0.1087, 0.3449, -0.1025, 0.4086, 0.2475 0.3633, 0.3943, 0.2372, -0.6980, 0.5216, 0.1925 -0.5325, -0.6466, -0.2178, -0.3589, 0.6310, 0.3568 0.2271, 0.5200, -0.1447, -0.8011, -0.7699, 0.3128 0.6415, 0.1993, 0.3777, -0.0178, -0.8237, 0.2181 -0.5298, -0.0768, -0.6028, -0.9490, 0.4588, 0.4356 0.6870, -0.1431, 0.7294, 0.3141, 0.1621, 0.1632 -0.5985, 0.0591, 0.7889, -0.3900, 0.7419, 0.2945 0.3661, 0.7984, -0.8486, 0.7572, -0.6183, 0.3449 0.6995, 0.3342, -0.3113, -0.6972, 0.2707, 0.1712 0.2565, 0.9126, 0.1798, -0.6043, -0.1413, 0.2893 -0.3265, 0.9839, -0.2395, 0.9854, 0.0376, 0.4770 0.2690, -0.1722, 0.9818, 0.8599, -0.7015, 0.3954 -0.2102, -0.0768, 0.1219, 0.5607, -0.0256, 0.3949 0.8216, -0.9555, 0.6422, -0.6231, 0.3715, 0.0801 -0.2896, 0.9484, -0.7545, -0.6249, 0.7789, 0.4370 -0.9985, -0.5448, -0.7092, -0.5931, 0.7926, 0.5402
Test data:
# synthetic_test_40.txt # 0.7462, 0.4006, -0.0590, 0.6543, -0.0083, 0.1935 0.8495, -0.2260, -0.0142, -0.4911, 0.7699, 0.1078 -0.2335, -0.4049, 0.4352, -0.6183, -0.7636, 0.5088 0.1810, -0.5142, 0.2465, 0.2767, -0.3449, 0.3136 -0.8650, 0.7611, -0.0801, 0.5277, -0.4922, 0.7140 -0.2358, -0.7466, -0.5115, -0.8413, -0.3943, 0.4533 0.4834, 0.2300, 0.3448, -0.9832, 0.3568, 0.1360 -0.6502, -0.6300, 0.6885, 0.9652, 0.8275, 0.3046 -0.3053, 0.5604, 0.0929, 0.6329, -0.0325, 0.4756 -0.7995, 0.0740, -0.2680, 0.2086, 0.9176, 0.4565 -0.2144, -0.2141, 0.5813, 0.2902, -0.2122, 0.4119 -0.7278, -0.0987, -0.3312, -0.5641, 0.8515, 0.4438 0.3793, 0.1976, 0.4933, 0.0839, 0.4011, 0.1905 -0.8568, 0.9573, -0.5272, 0.3212, -0.8207, 0.7415 -0.5785, 0.0056, -0.7901, -0.2223, 0.0760, 0.5551 0.0735, -0.2188, 0.3925, 0.3570, 0.3746, 0.2191 0.1230, -0.2838, 0.2262, 0.8715, 0.1938, 0.2878 0.4792, -0.9248, 0.5295, 0.0366, -0.9894, 0.3149 -0.4456, 0.0697, 0.5359, -0.8938, 0.0981, 0.3879 0.8629, -0.8505, -0.4464, 0.8385, 0.5300, 0.1769 0.1995, 0.6659, 0.7921, 0.9454, 0.9970, 0.2330 -0.0249, -0.3066, -0.2927, -0.4923, 0.8220, 0.2437 0.4513, -0.9481, -0.0770, -0.4374, -0.9421, 0.2879 -0.3405, 0.5931, -0.3507, -0.3842, 0.8562, 0.3987 0.9538, 0.0471, 0.9039, 0.7760, 0.0361, 0.1706 -0.0887, 0.2104, 0.9808, 0.5478, -0.3314, 0.4128 -0.8220, -0.6302, 0.0537, -0.1658, 0.6013, 0.4306 -0.4123, -0.2880, 0.9074, -0.0461, -0.4435, 0.5144 0.0060, 0.2867, -0.7775, 0.5161, 0.7039, 0.3599 -0.7968, -0.5484, 0.9426, -0.4308, 0.8148, 0.2979 0.7811, 0.8450, -0.6877, 0.7594, 0.2640, 0.2362 -0.6802, -0.1113, -0.8325, -0.6694, -0.6056, 0.6544 0.3821, 0.1476, 0.7466, -0.5107, 0.2592, 0.1648 0.7265, 0.9683, -0.9803, -0.4943, -0.5523, 0.2454 -0.9049, -0.9797, -0.0196, -0.9090, -0.4433, 0.6447 -0.4607, 0.1811, -0.2389, 0.4050, -0.0078, 0.5229 0.2664, -0.2932, -0.4259, -0.7336, 0.8742, 0.1834 -0.4507, 0.1029, -0.6294, -0.1158, -0.6294, 0.6081 0.8948, -0.0124, 0.9278, 0.2899, -0.0314, 0.1534 -0.1323, -0.8813, -0.0146, -0.0697, 0.6135, 0.2386




















.NET Test Automation Recipes
Software Testing
SciPy Programming Succinctly
Keras Succinctly
R Programming
2026 Visual Studio Live
2025 Summer MLADS Conference
2025 DevIntersection Conference
2025 Machine Learning Week
2025 Ai4 Conference
2025 G2E Conference
2025 iSC West Conference
You must be logged in to post a comment.